- 閱讀權限
- 30
- 最後登錄
- 16-7-30
- 精華
- 0
- UID
- 1357463
- 帖子
- 443
- 積分
- 709
- 註冊時間
- 09-7-1
- 在線時間
- 342 小時
- UID
- 1357463
- 帖子
- 443
- 積分
- 709
- Good
- 0
- 註冊時間
- 09-7-1
- 在線時間
- 342 小時
|
English
1.let f(x)=-(x-a)^2+b,where a and b are real.Point P is the vertex of the graph of y=f(x)
the coordinates of point P is (a,b)
2.let g(x) be aquadratic function such that the coefficient of x^2 is 1 and the vertex of the graph of y=g(x) is point Q(b,a).
It is given that the graph of y=f(x) passes through point Q
Question:
g(x)=(x-b)^2+a,show that the graph of y=g(x) passes through point P
中文
1.設f(x)=-(x-a)^2+b,其中a、b為實數。點p是y=f(x)的頂點。
p座標為數(a,b)
2.設g(x)為二次[咸]數,x^2項係數是1,y=g(x)頂點為q(b,a)。已知y=f(x)通過q
g(x)=(x-b)^2+a,證明y=g(x)通過p
望各位詳細些解阿,thx~~~:smilie_:): |
|